Garden City
Listen to The Optimal Health Program for latest on Stem Cell Therapy Treatments
Click Here for Telemedicine Consultation & Appointment

Daily Archives for: May 12th, 2008

It has been demonstrated for the first time that a wheat germ extract prevents colonic cancer in laboratory animals. Four-week-old inbred male F-344 rats were used in the study. Colon carcinogenesis has been induced by azoxymethane (AOM). Ten rats served as untreated controls (group 1). For the results of the animals in group 2, AOM was dissolved in physiologic saline and the animals were given three subcutaneous injections 1 week apart,

The role of the product in the results of colorectal cancer is reviewed in the light of experimental and clinical results to date. The fermented wheat germ extract (code name: MSC, trade name: Avemar) registered as a dietary food for special medical purposes for cancer patients to complement the active onco , exerted a growth inhibitory effect in HCR-25 human colon carcinoma xenograft,

Background: The fermented wheat germ extract (code name:MSC, trade name: Avemar), is a complex mixture of biologically active molecules with potent anti-metastatic activities in various human malignancies. The objective of this study was to examine the in vitro cytotoxic activities of Avemar on 5 human gastric carcinoma cell lines and to test whether the mechanism involves induction of apoptosis.

Metal-induced toxicity and carcinogenicity, with an emphasis on the generation and role of reactive oxygen and nitrogen species, is reviewed. Metal-mediated formation of free radicals causes various modifications to DNA bases, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Lipid peroxides, formed by the attack of radicals on polyunsaturated fatty acid residues of phospholipids,

Ferritin from horse spleen was found to cause severe chromosome aberrations in cultured Chinese hamster ovary cells. Ferritin at 15 to 170 ug/mi was clastogenic and at higher doses was cytotoxic. At comparable concentrations of protein or iron, neither apoferritin nor complexed iron was clastogenic. Sulfhydryl compounds glutathione and cysteine reduced the cytotoxic and clastogenic activities of ferritin.

Nephrotoxic acute renal failure was experimentally induced in male rats by s.c. application of mercuric chloride and i.p. administration of maleate, respectively. Mercuric chloride and maleate are known to enhance the formation of free radicals and peroxides, which presumably overload the cell's natural elimination mechanisms for these highly reactive intermediates. In addition, a reduction in activities of superoxide dismutase,

Glutathione S-transferase (GST, EC is an enzyme responsible for inactivation of a large variety of toxic, electrophilic compounds and organic peroxides. GST activity and GST pi expression were studied in patients with amyotrophic lateral sclerosis (ALS). Studies were conducted on cerebrospinal fluid (CSF), blood serum and peripheral blood mononuclear cells (PBMC) obtained from 40 ALS patients.

Thimerosol is an antiseptic containing 49.5% ethyl mercury that has been used for years as a preservative in many infant vaccines and in flu vaccines. Environmental methyl mercury has been shown to be highly neurotoxic, especially to the developing brain. Because mercury has a high affinity for thiol (sulfhydryl (–SH)) groups, the thiol-containing antioxidant, glutathione (GSH),

OBJECTIVE: Thimerosal is an important preservative in vaccines and ophthalmologic preparations. The substance is known to be a type IV sensitizing agent. High sensitization
rates were observed in contact-allergic patients and in health care workers who had been exposed to thimerosal-preserved vaccines. There is evidence for the involvement of the glutathione system in the metabolism of thimerosal or its decomposition products (organomercury alkyl compounds).

Background: Autism is a complex neurodevelopmental disorder that usually presents in early childhood and that is thought to be influenced by genetic and environmental factors. Although abnormal metabolism of methionine and homocysteine has been associated with other neurologic diseases, these pathways have not been evaluated in persons with autism.
Objective: The purpose of this study was to evaluate plasma concentrations of metabolites in the methionine transmethylation and transsulfuration pathways in children diagnosed with autism.