A Disruption in Iron-Sulfur Center Biogenesis via Inhibition of Mitochondrial Dithiol Glutaredoxin 2 May Contribute to Mitochondrial and Cellular Iron Dysregulation in Mammalian Glutathione-Depleted Dopaminergic Cells: Implications for Parkinson's Disease

Abstract

Parkinson's disease (PD) is characterized by early glutathione depletion in the substantia nigra (SN). Among its various functions in the cell, glutathione acts as a substrate for the mitochondrial enzyme glutaredoxin 2 (Grx2). Grx2 is involved in glutathionylation of protein cysteine sulfhydryl residues in the mitochondria. Although monothiol glutathione–dependent oxidoreductases (Grxs) have previously been demonstrated to be involved in iron-sulfur (Fe-S) center biogenesis, including that in yeast, here we report data suggesting the involvement of mitochondrial Grx2, a dithiol Grx, in iron-sulfur biogenesis in a mammalian dopaminergic cell line. Given that mitochondrial dysfunction and increased cellular iron levels are two important hallmarks of PD, this suggests a novel potential mechanism by which glutathione depletion may affect these processes in dopaminergic neurons. We report that depletion of glutathione as substrate results in a dose-dependent Grx2 inhibition and decreased iron incorporation into a mitochondrial complex I (CI) and aconitase (m-aconitase). Mitochondrial Grx2 inhibition through siRNA results in a corresponding decrease in CI and m-aconitase activities. It also results in significant increases in iron-regulatory protein (IRP) binding, likely as a consequence of conversion of Fe-S–containing cellular aconitase to its non–Fe-S–containing IRP1 form. This is accompanied by increased transferrin receptor, decreased ferritin, and subsequent increases in mitochondrial iron levels. This suggests that glutathione depletion may affect important pathologic cellular events associated with PD through its effects on Grx2 activity and mitochondrial Fe-S biogenesis.

Share This Post:

Related Posts