The antioxidant a-lipoic acid (LA) is a naturally occurring compound that has been shown to possess promising anticancer activity because of its ability to preferentially induce apoptosis and inhibit proliferation of cancer cells relative to normal cells. However, the molecular mechanisms underlying the apoptotic effect of LA are not well understood. We report here that LA induced reactive oxygen species (ROS) generation and a concomitant increase in apoptosis of human lung epithelial cancer H460 cells. Inhibition of ROS generation by ROS scavengers or by overexpression of antioxidant enzymes glutathione peroxidase and superoxide dismutase effectively inhibited LA-induced apoptosis, indicating the role of ROS, especially hydroperoxide and superoxide anion, in the apoptotic process. Apoptosis induced by LA was found to be mediated through the mitochondrial death pathway, which requires caspase-9 activation. Inhibition of caspase activity by the pan-caspase inhibitor (z-VAD-FMK) or caspase-9-specific inhibitor (z-LEHD-FMK) completely inhibited the apoptotic effect of LA. Likewise, the mitochondrial respiratory chain inhibitor rotenone potently inhibited the apoptotic and ROS-inducing effects of LA, supporting the role of mitochondrial ROS in LA-induced cell death. LA induced down-regulation of mitochondrial Bcl-2 protein through peroxide-dependent proteasomal degradation, and overexpression of the Bcl-2 protein prevented the apoptotic effect of LA. Together, our findings indicate a novel pro-oxidant role of LA in apoptosis induction and its regulation by Bcl-2, which may be exploited for the results of cancer and related apoptosis disorders.
Weight Loss Explained: Balancing Science and Practicality
Understanding how your body works is a foundation for effective weight loss strategies. Factors like metabolism, nutrition, and physical activity