The present decade had witnessed an unprecedented attention focused on glial cells as a result of their unusual physiological roles that are being unraveled. It is now known that, rather than being a mere supporter of neurons, astroglia are actively involved in their modulation. The aluminum hypothesis seems to have been laid to rest, probably due to contradictory epidemiological reports on it as a causative factor of neurodegenerative diseases. Surprisingly, newer scientific evidences continue to appear and recent findings have implicated astrocytes as the principal target of its toxic action. In view of the likely detrimental effects of the interaction between these two infamous partners in neuroscience on neurons and nervous system, we have reviewed some aspects of glia–neuron interaction and discussed the implications of aluminum-impaired astrocytic functions on neurodegeneration. Because sporadic causes still account for the majority of the neurodegenerative diseases of which Alzheimer's disease is the most prominent, it has been suggested that neurotoxicologists should not relent in screening for the environmental agents, such as aluminum, and that considerable attention should be given to glial cells in view of the likely implications of environmental toxicants on their never-imagined newly reported roles in the central nervous system (CNS).
Unlocking the Secrets: How Hair Restoration Works
Hair loss can be a distressing experience, affecting millions of people worldwide. Understanding the intricacies of hair restoration is essential